
 
 

1 

 

 



 

  

2 

Table of Contents 
 

 

Executive Summary 4 

Project Context 4 

Audit scope 6 

Security Rating 7 

Intended Smart Contract Functions 8 

Code Quality 9 

Audit Resources 9 

Dependencies 9 

Severity Definitions 10 

Status Definitions 11 

Audit Findings 12 

Centralisation 19 

Conclusion 20 

Our Methodology 21 

Disclaimers 23 

About Hashlock 24 

 

 

 

 
 
 

 

 
Hashlock Pty Ltd 



 

  

3 
 
 
 
 

 

 

CAUTION 

 

THIS DOCUMENT IS A SECURITY AUDIT REPORT AND MAY CONTAIN 

CONFIDENTIAL INFORMATION. THIS INCLUDES IDENTIFIED 

VULNERABILITIES AND MALICIOUS CODE WHICH COULD BE USED TO 

COMPROMISE THE PROJECT. THIS DOCUMENT SHOULD ONLY BE FOR 

INTERNAL USE UNTIL ISSUES ARE RESOLVED. ONCE VULNERABILITIES ARE 

REMEDIATED, THIS REPORT CAN BE MADE PUBLIC. THE CONTENT OF THIS 

REPORT IS OWNED BY HASHLOCK PTY LTD FOR USE OF THE CLIENT. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Hashlock Pty Ltd 



 

  

4 

Executive Summary  

The Cabal Labs team partnered with Hashlock to conduct a security audit of their smart 

contract. Hashlock manually and proactively reviewed the code in order to ensure the 

project’s team and community that the deployed contracts are secure.  

 

Project Context 

Cabal Labs is a DeFi dApp built on Solana Network that allows users to create new 

tokens and have a fair sale. These tokens can be swapped in and out for Solana native 

currency. Lastly, liquidity pools will be launched to Raydium. 

 

Project Name: Cabal Labs 

Project Type: DeFi, dApp 

Compiler Version: rustc 1.81.0 

Logo: 

 

 

 

 

 

 

 

 

 

 

 

 
Hashlock Pty Ltd 



 

  

5 

Visualised Context: 

 

Project Name                                                                   Launch Date 

          Cabal Labs                                                                                          TBA 

 

 

 

  Compiler Version                                                                  Language 

         rustc 1.81.0                                                                                      RUST 

 

 

 
           Network                                                                     Token Ticker 

              SOLANA                                                                                       N/A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Hashlock Pty Ltd 



 

  

6 

Audit scope 

We at Hashlock audited the Rust code within the Cabal Labs project,  the scope of work 

included a comprehensive review of the smart contracts listed below. We tested the 

smart contracts to check for their security and efficiency. These tests were undertaken 

primarily through manual line-by-line analysis and were supported by software-assisted 

testing.   

 

Description Cabal Labs Smart Contracts  

Platform Solana / Rust 

Audit Date May, 2025 

Github URL https://github.com/cabalfun/cabal-solana-meme-cont
ract-raydium  

Component 1 buy.rs 

Component 2 create_amm_liquidity.rs 

Component 3 initialize.rs 

Component 4 lock_amm_liquidity.rs 

Component 5 sell.rs 

Component 6 create_config.rs 

Component 7 update_config.rs 

Audited GitHub Commit 
Hash 5fc17a37bf82edbb8beb6f56b8cb5ea3dd0e7caa 

Fix Review GitHub 
Commit Hash b7d6b7fd847420056435b8c96fd829ec1a73bcc3 

 

 

 

 
Hashlock Pty Ltd 

https://github.com/cabalfun/cabal-solana-meme-contract-raydium
https://github.com/cabalfun/cabal-solana-meme-contract-raydium


 

  

7 

Security Rating 

 
After Hashlock’s Audit, we found the smart contracts to be “Secure”. The contracts all 
follow simple logic, with correct and detailed ordering. They use a series of interfaces.               
 

              
 
The ‘Hashlocked’ rating is reserved for projects that ensure ongoing security via bug bounty programs or 
on chain monitoring technology. 
 
 

All issues uncovered during automated and manual analysis were meticulously reviewed 

and applicable vulnerabilities are presented in the Audit Findings section. The general 

security overview is presented in the Standardised Checks section and the project's 

contract functionality is presented in the Intended Smart Contract Functions section. 

 

All vulnerabilities initially identified have now been resolved and acknowledged. 

  
 
Hashlock found: 

1 Medium severity vulnerabilities 

3 Low severity vulnerabilities 

1 Gas Optimisations  

4 QA 

 

Caution: Hashlock’s audits do not guarantee a project's success or ethics, and are not 

liable or responsible for security. Always conduct independent research about any 

project before interacting.  

 

 

 
Hashlock Pty Ltd 



 

  

8 

Intended Smart Contract Functions 

Claimed Behaviour Actual Behaviour 

buy.rs 

- Allows users to purchase mint tokens. 

Contract achieves this 

functionality.  

 

create_amm_liquidity.rs 

- Allows users to create AMM liquidity. 

Contract achieves this 

functionality.  

 

initialize.rs 

- Allows users to initialize a mint token and native 

token pool. 

Contract achieves this 

functionality.  

 

lock_amm_liquidity.rs 

- Allows users to lock AMM liquidity after it is fully 

funded. 

Contract achieves this 

functionality.  

 

sell.rs 

- Allows users to sell mint tokens. 

Contract achieves this 

functionality.  

 

create_config.rs 

- Allows the admin to create Cabal configuration. 

Contract achieves this 

functionality.  

 

update_config.rs 

- Allows the admin to update existing Cabal 

configuration. 

 

Contract achieves this 

functionality.  

 

 
Hashlock Pty Ltd 



 

  

9 

Code Quality 

 
This audit scope involves the smart contracts of the Cabal Labs project, as outlined in 

the Audit Scope section. All contracts, libraries, and interfaces mostly follow standard 

best practices and to help avoid unnecessary complexity that increases the likelihood of 

exploitation, however, some refactoring was required.  

 

The code is very well commented on and closely follows best practice nat-spec styling. 

All comments are correctly aligned with code functionality.  

 

Audit Resources 

We were given the Cabal Labs project smart contract code in the form of Github access. 

 

As mentioned above, code parts are well commented. The logic is straightforward,  and 

therefore it is easy to quickly comprehend the programming flow as well as the complex 

code logic. The comments are helpful in providing an understanding of the protocol's 

overall architecture. 

 

Dependencies 

As per our observation, the libraries used in this smart contracts infrastructure are 

based on well-known industry standard open source projects.  

Apart from libraries, its functions are used in external smart contract calls. 

 
 

 

 

 
Hashlock Pty Ltd 



 

  

10 

Severity Definitions 

The severity levels assigned to findings represent a comprehensive evaluation of both 

their potential impact and the likelihood of occurrence within the system. These 

categorizations are established based on Hashlock's professional standards and 

expertise, incorporating both industry best practices and our discretion as security 

auditors. This ensures a tailored assessment that reflects the specific context and risk 

profile of each finding. 

 

Significance Description 

High 

High-severity vulnerabilities can result in loss of funds, 
asset loss, access denial, and other critical issues that 
will result in the direct loss of funds and control by the 
owners and community. 

Medium 
Medium-level difficulties should be solved before 
deployment, but won't result in loss of funds.  

Low 
Low-level vulnerabilities are areas that lack best 
practices that may cause small complications in the 
future.  

Gas Gas Optimisations, issues, and inefficiencies 

QA 
Quality Assurance (QA) findings are informational and 
don't impact functionality. Supports clients improve the 
clarity, maintainability, or overall structure of the code. 

 

 

 

 

 

 
Hashlock Pty Ltd 



 

  

11 

Status Definitions 

Each identified security finding is assigned a status that reflects its current stage of 

remediation or acknowledgment. The status provides clarity on the handling of the 

issue and ensures transparency in the auditing process. The statuses are as follows: 

 

Significance Description 

Resolved 

The identified vulnerability has been fully mitigated 
either through the implementation of the recommended 
solution proposed by Hashlock or through an alternative 
client-provided solution that demonstrably addresses the 
issue 

Acknowledged 

The client has formally recognized the vulnerability but 
has chosen not to address it due to the high cost or 
complexity of remediation. This status is acceptable for 
medium and low-severity findings after internal review 
and agreement. However, all high-severity findings must 
be resolved without exception. 

Unresolved 
The finding remains neither remediated nor formally 
acknowledged by the client, leaving the vulnerability 
unaddressed. 

 
Hashlock Pty Ltd 



 

  

12 

Audit Findings 

Medium 

[M-01] programs/cabal_meme_v1/src/states/cabal.rs#require_amm_lfg - 

Incorrect flag validation for require_amm_lfg 

Description 

The require_amm_lfg function checks for the incorrect flag. Ideally, it should validate 

the self.amm_lfg flag is set to true. However, the current implementation incorrectly 

checks for self.lfg. 

Impact 

If the authority disables the self.amm_lfg flag to prevent users from calling the 

CreateAmmLiquidity and LockAmmLiquidity instructions, this restriction will be 

ineffective. 

Recommendation 

Consider updating the require_amm_lfg function to check for self.amm_lfg flag. 

Status 

Resolved 

 

 
Hashlock Pty Ltd 



 

  

13 

Low 

[L-01] programs/cabal_meme_v1/src/states/cabal.rs#update - Two step 

ownership transfer is not implemented 

Description 

Suppose the authority provided ConfigOption::AuthorityAddress, the Cabal authority 

will be updated via the UpdateConfig instruction. This is problematic because if the 

ownership is set to an incorrect address, the ownership will be lost. 

Impact 

The Cabal authority will be invalid, and no one can govern the protocol. The authority 

will be renounced unintendedly. 

Recommendation 

Consider implementing a two-step ownership transfer within two transactions: the first 

transaction occurs by nominating an admin, and the second transaction requires the 

nominated admin to accept the ownership transfer.  

This mechanism ensures that the receiver is intended to receive the ownership transfer 

and prevents the human error of transferring the ownership to an incorrect address. 

Status 

Acknowledged  

 
Hashlock Pty Ltd 



 

  

14 

[L-02] programs/cabal_meme_v1/src/states/cabal.rs#update - Cabal 

misconfiguration may cause the protocol to fail to work properly 

Description 

The UpdateConfig instruction allows the authority to update the configuration for the 

Cabal account. However, several validations are not implemented to ensure the protocol 

works correctly: 

● The tx_min_cap and tx_max_cap are not validated to ensure that tx_min_cap is 

less than tx_max_cap. 

● The tx_min_fee_bps and tx_max_fee_bps are not validated to ensure that 

tx_min_fee_bps is less than tx_max_fee_bps. 

● The pool_min_cap and pool_max_cap are not validated to ensure that 

pool_min_cap is less than pool_max_cap. 

● The tx_token_creator_fee_bps is not validated to ensure its value is not zero and 

does not exceed BPS_DENOMINATOR. 

Impact 

The Cabal configuration will be invalid, and the protocol may not work as expected. For 

example, users cannot buy tokens because a zero token_creator_fee is configured. 

Recommendation 

Consider implementing validations as mentioned above. 

Status 

Resolved  

 
Hashlock Pty Ltd 



 

  

15 

[L-03] programs/cabal_meme_v1/src/instructions/initialize.rs#Initialize - 

token_mint PDA account is not validated fully 

Description 

In the following instances, PDAs for the Mint accounts are not validated: 

● Line 14 of programs/cabal_meme_v1/src/instructions/buy.rs 

● Line 19 of programs/cabal_meme_v1/src/instructions/create_amm_liquidity.rs 

● Line 18 of programs/cabal_meme_v1/src/instructions/lock_amm_liquidity.rs 

● Line 14 of programs/cabal_meme_v1/src/instructions/sell.rs 

Impact 

Invalid PDA accounts could be incorrectly supplied, potentially bypassing 

authentications. While the current implementation prevents this from happening (as 

other accounts require the correct PDA), not validating PDAs opens up possibilities for 

exploitation if the codebase were to change in the future. 

Recommendation 

Consider validating the Mint account similar to the validation in the Initialize 

instruction by checking mint::decimals = 6.  

Status 

Acknowledged 

 

 
Hashlock Pty Ltd 

http://buy.rs


 

  

16 

Gas 

[G-01] programs/cabal_meme_v1/src/instructions/*.rs - PDA bump can be 

stored to decrease gas consumption 

Description 

Across the contract, multiple instances exist where the PDAs of Cabal and Pool are 

required. Since their bumps are not stored, Anchor must derive the PDA by iterating 

over all bumps, which is gas-consuming. 

Recommendation 

The iteration can be skipped by storing the Cabal and Pool bumps when initialized and 

accessing them directly in the instructions. 

For example, in the CreateConfig instruction, the bump computed for 

ctx.accounts.cabal_state can be stored inside the Cabal struct, and used directly as 

Cabal.bump.  

A similar approach can be implemented in the Initialize instruction to record the 

ctx.accounts.pool_state and ctx.accounts.pool_liquidity bump values in the Pool 

struct and access them directly. This also removes the need to call 

Pubkey::find_program_address in several instances, decreasing overall gas efficiency. 

Status 

Acknowledged  

 
Hashlock Pty Ltd 



 

  

17 

QA 

[Q-01] programs/cabal_meme_v1/src/instructions/sell.rs#Sell - Unneeded 

init_if_needed macro in investor_token_account 

Description 

In line 32, the investor_token_account account is implemented with the init_if_needed 

macro. This macro is unnecessary as the users will only call the Sell instruction to swap 

mint tokens for lamports, which means they must already have an associated token 

account. 

Recommendation 

Consider removing the init_if_needed macro and replacing it with the mut macro. 

Status 

Resolved 

[Q-02] 

programs/cabal_meme_v1/src/instructions/admin/update_config.rs#Update

Config - Unneeded mut macro and system_program account 

Description 

The UpdateConfig instruction is called to update the ctx.accounts.cabal_state account. 

However, the mut macro for the authority account is unneeded, and the system_program 

is not required for this instruction. 

Recommendation 

Consider removing the mut macro for authority and removing the system_program 

account requirement. 

Status 

Resolved  

 
Hashlock Pty Ltd 



 

  

18 

[Q-03] programs/cabal_meme_v1/src/states/pool.rs#sell - Misleading 

min_native_token_amount_in parameter in Sell instruction 

Description 

The min_native_token_amount_in parameter is misleading. It intuitively hints to users 

that this will be the minimum amount of native tokens to provide, which is incorrect 

because it is actually the minimum amount of native tokens users must receive during 

the Sell instruction transaction. 

Recommendation 

Consider renaming the parameter to min_native_token_amount_out. 

Status 

Resolved 

[Q-04] programs/cabal_meme_v1/src/states/pool.rs#create_amm_liquidity, 

lock_amm_liquidity - Unneeded and unused cabal_state parameter 

Description 

The cabal_state parameter in the create_amm_liquidity and lock_amm_liquidity 

functions is unnecessary as they are unused. 

Recommendation 

Consider removing the cabal_state parameter in the create_amm_liquidity and 

lock_amm_liquidity functions. 

Status 

Resolved 

 

 

 

 
Hashlock Pty Ltd 



 

  

19 

Centralisation 

The Cabal Labs project values security and utility over decentralisation.  

 

The owner executable functions within the protocol increase security and functionality 

but depend highly on internal team responsibility.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Hashlock Pty Ltd 



 

  

20 

Conclusion 

After Hashlock’s analysis, the Cabal Labs project seems to have a sound and well-tested 

code base, now that our vulnerability findings have been resolved and acknowledged. 

Overall, most of the code is correctly ordered and follows industry best practices. The 

code is well commented on as well. To the best of our ability, Hashlock is not able to 

identify any further vulnerabilities. 

 

 

 
Hashlock Pty Ltd 



 

  

21 

Our Methodology 

 

Hashlock strives to maintain a transparent working process and to make our audits a 

collaborative effort. The objective of our security audits is to improve the quality of 

systems and upcoming projects we review and to aim for sufficient remediation to help 

protect users and project leaders. Below is the methodology we use in our security 

audit process. 

 

Manual Code Review: 

In manually analysing all of the code, we seek to find any potential issues with code 

logic, error handling, protocol and header parsing, cryptographic errors, and random 

number generators. We also watch for areas where more defensive programming could 

reduce the risk of future mistakes and speed up future audits. Although our primary 

focus is on the in-scope code, we examine dependency code and behaviour when it is 

relevant to a particular line of investigation. 

 

Vulnerability Analysis: 

Our methodologies include manual code analysis, user interface interaction, and white 

box penetration testing. We consider the project's website, specifications, and 

whitepaper (if available) to attain a high-level understanding of what functionality the 

smart contract under review contains. We then communicate with the developers and 

founders to gain insight into their vision for the project. We install and deploy the 

relevant software, exploring the user interactions and roles. While we do this, we 

brainstorm threat models and attack surfaces. We read design documentation, review 

other audit results, search for similar projects, examine source code dependencies, skim 

open issue tickets, and generally investigate details other than the implementation.  

 

 

 
Hashlock Pty Ltd 



 

  

22 

 

 

Documenting Results: 

We undergo a robust, transparent process for analysing potential security vulnerabilities 

and seeing them through to successful remediation. When a potential issue is 

discovered, we immediately create an issue entry for it in this document, even though 

we have not yet verified the feasibility and impact of the issue. This process is vast 

because we document our suspicions early even if they are later shown to not represent 

exploitable vulnerabilities. We generally follow a process of first documenting the 

suspicion with unresolved questions, and then confirming the issue through code 

analysis, live experimentation, or automated tests. Code analysis is the most tentative, 

and we strive to provide test code, log captures, or screenshots demonstrating our 

confirmation. After this, we analyse the feasibility of an attack in a live system. 

 

Suggested Solutions: 

We search for immediate mitigations that live deployments can take and finally, we 

suggest the requirements for remediation engineering for future releases. The 

mitigation and remediation recommendations should be scrutinised by the developers 

and deployment engineers, and successful mitigation and remediation is an ongoing 

collaborative process after we deliver our report, and before the contract details are 

made public. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Hashlock Pty Ltd 



 

  

23 

Disclaimers 

Hashlock’s Disclaimer 

 

Hashlock’s team has analysed these smart contracts in accordance with the best 

industry practices at the date of this report, in relation to: cybersecurity vulnerabilities 

and issues in the smart contract source code, the details of which are disclosed in this 

report, (Source Code); the Source Code compilation, deployment, and functionality 

(performing the intended functions). 

 
Due to the fact that the total number of test cases is unlimited, the audit makes no 

statements or warranties on the security of the code. It also cannot be considered as a 

sufficient assessment regarding the utility and safety of the code, bug-free status, or 

any other statements of the contract. While we have done our best in conducting the 

analysis and producing this report, it is important to note that you should not rely on 

this report only. We also suggest conducting a bug bounty program to confirm the high 

level of security of this smart contract.  

 

Hashlock is not responsible for the safety of any funds and is not in any way liable for 

the security of the project.  

 
 

Technical Disclaimer 

 

Smart contracts are deployed and executed on a blockchain platform. The platform, its 

programming language, and other software related to the smart contract can have their 

own vulnerabilities that can lead to attacks. Thus, the audit can’t guarantee the explicit 

security of the audited smart contracts. 
 
 
 
 
 
 
 
 
 
 
 

 
Hashlock Pty Ltd 



 

  

24 

About Hashlock 

Hashlock is an Australian-based company aiming to help facilitate the successful 

widespread adoption of distributed ledger technology. Our key services all have a focus 

on security, as well as projects that focus on streamlined adoption in the business 

sector.  

 

Hashlock is excited to continue to grow its partnerships with developers and other 

web3-oriented companies to collaborate on secure innovation, helping businesses and 

decentralised entities alike. 

 

Website: hashlock.com.au 

Contact: info@hashlock.com.au 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Hashlock Pty Ltd 

http://hashlock.com.au
mailto:info@hashlock.com.au


 

  

25 

 

 

 

 

 

 

 
 

 

 

 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Hashlock Pty Ltd 


	Executive Summary  
	Project Context 
	Audit scope 
	Security Rating 
	Intended Smart Contract Functions 
	Code Quality 
	Audit Resources 
	Dependencies 
	Severity Definitions 
	Status Definitions 
	Audit Findings 
	Medium 
	[M-01] programs/cabal_meme_v1/src/states/cabal.rs#require_amm_lfg - Incorrect flag validation for require_amm_lfg 
	Description 
	Impact 
	Recommendation 
	Status 


	 
	Low 
	[L-01] programs/cabal_meme_v1/src/states/cabal.rs#update - Two step ownership transfer is not implemented 
	Description 
	Impact 
	Recommendation 
	Status 

	[L-02] programs/cabal_meme_v1/src/states/cabal.rs#update - Cabal misconfiguration may cause the protocol to fail to work properly 
	Description 
	Impact 
	Recommendation 
	Status 

	[L-03] programs/cabal_meme_v1/src/instructions/initialize.rs#Initialize - token_mint PDA account is not validated fully 
	Description 
	Impact 
	Recommendation 
	Status 


	 
	Gas 
	[G-01] programs/cabal_meme_v1/src/instructions/*.rs - PDA bump can be stored to decrease gas consumption 
	Description 
	Recommendation 
	Status 


	QA 
	[Q-01] programs/cabal_meme_v1/src/instructions/sell.rs#Sell - Unneeded init_if_needed macro in investor_token_account 
	Description 
	Recommendation 
	Status 

	[Q-02] programs/cabal_meme_v1/src/instructions/admin/update_config.rs#UpdateConfig - Unneeded mut macro and system_program account 
	Description 
	Recommendation 
	Status 

	[Q-03] programs/cabal_meme_v1/src/states/pool.rs#sell - Misleading min_native_token_amount_in parameter in Sell instruction 
	Description 
	Recommendation 
	Status 

	[Q-04] programs/cabal_meme_v1/src/states/pool.rs#create_amm_liquidity, lock_amm_liquidity - Unneeded and unused cabal_state parameter 
	Description 
	Recommendation 
	Status 



	Centralisation 
	Conclusion 
	Our Methodology 
	Disclaimers 
	About Hashlock 
	 

